Science, Tech, Math › Science Understanding Endothermic and Exothermic Reactions Endothermic vs Exothermic Share Flipboard Email Print ThoughtCo / Bailey Mariner Science Chemistry Basics Chemical Laws Molecules Periodic Table Projects & Experiments Scientific Method Biochemistry Physical Chemistry Medical Chemistry Chemistry In Everyday Life Famous Chemists Activities for Kids Abbreviations & Acronyms Biology Physics Geology Astronomy Weather & Climate Table of Contents Expand Examples of Endothermic and Exothermic Processes Demonstrations You Can Perform Endothermic vs Exothermic Comparison Endergonic and Exergonic Reactions Resources and Further Reading By Anne Marie Helmenstine, Ph.D. Anne Marie Helmenstine, Ph.D. Facebook Twitter Chemistry Expert Ph.D., Biomedical Sciences, University of Tennessee at Knoxville B.A., Physics and Mathematics, Hastings College Dr. Helmenstine holds a Ph.D. in biomedical sciences and is a science writer, educator, and consultant. She has taught science courses at the high school, college, and graduate levels. Learn about our Editorial Process Updated on September 12, 2019 Many chemical reactions release energy in the form of heat, light, or sound. These are exothermic reactions. Exothermic reactions may occur spontaneously and result in higher randomness or entropy (ΔS > 0) of the system. They are denoted by a negative heat flow (heat is lost to the surroundings) and decrease in enthalpy (ΔH < 0). In the lab, exothermic reactions produce heat or may even be explosive. There are other chemical reactions that must absorb energy in order to proceed. These are endothermic reactions. Endothermic reactions cannot occur spontaneously. Work must be done in order to get these reactions to occur. When endothermic reactions absorb energy, a temperature drop is measured during the reaction. Endothermic reactions are characterized by positive heat flow (into the reaction) and an increase in enthalpy (+ΔH). Examples of Endothermic and Exothermic Processes Photosynthesis is an example of an endothermic chemical reaction. In this process, plants use the energy from the sun to convert carbon dioxide and water into glucose and oxygen. This reaction requires 15MJ of energy (sunlight) for every kilogram of glucose that is produced: sunlight + 6CO2(g) + H2O(l) = C6H12O6(aq) + 6O2(g) Other examples of endothermic processes include: Dissolving ammonium chloride in waterCracking alkanesNucleosynthesis of elements heavier than nickel in starsEvaporating liquid waterMelting ice An example of an exothermic reaction is the mixture of sodium and chlorine to yield table salt. This reaction produces 411 kJ of energy for each mole of salt that is produced: Na(s) + 0.5Cl2(s) = NaCl(s) Other examples of exothermic processes include: The thermite reaction A neutralization reaction (e.g., mixing an acid and a base to form a salt and water) Most polymerization reactions Combustion of a fuel Respiration Nuclear fission Corrosion of metal (an oxidation reaction) Dissolving an acid in water Demonstrations You Can Perform Many exothermic and endothermic reactions involve toxic chemicals, extreme heat or cold, or messy disposal methods. An example of a quick exothermic reaction is dissolving powdered laundry detergent in your hand with a bit of water. An example of an easy endothermic reaction is dissolving potassium chloride (sold as a salt substitute) in your hand with water. These endothermic and exothermic demonstrations are safe and easy: Exciting Exothermic Reactions to Try: Heat things up with one of these simple exothermic reaction demonstrations. Create an Endothermic Reaction: Some endothermic reactions get cold enough to cause frostbite. Here's an example of a reaction safe enough for kids to touch. How to Create an Exothermic Chemical Reaction: Some exothermic reactions produce flames and get extremely hot (like the thermite reaction). Here is a safe exothermic reaction that produces heat but won't start fires or cause a burn. Make Hot Ice From Vinegar and Baking Soda: Sodium acetate or "hot ice" can be used as either an endothermic or exothermic reaction, depending on whether you are crystallizing or melting the solid. Endothermic vs Exothermic Comparison Here's a quick summary of the differences between endothermic and exothermic reactions: Endothermic Exothermic heat is absorbed (feels cold) heat is released (feels warm) energy must be added for reaction to occur reaction occurs spontaneously disorder decreases (ΔS < 0) entropy increases (ΔS > 0) increase in enthalpy (+ΔH) decrease in enthalpy (-ΔH) Endergonic and Exergonic Reactions Endothermic and exothermic reactions refer to the absorption or release of heat. There are other types of energy which may be produced or absorbed by a chemical reaction. Examples include light and sound. In general, reactions involving energy may be classified as endergonic or exergonic, An endothermic reaction is an example of an endergonic reaction. An exothermic reaction is an example of an exergonic reaction. Key Facts Endothermic and exothermic reactions are chemical reactions that absorb and release heat, respectively.A good example of an endothermic reaction is photosynthesis. Combustion is an example of an exothermic reaction.The categorization of a reaction as endo- or exothermic depends on the net heat transfer. In any given reaction, heat is both absorbed and released. For example, energy must be input into a combustion reaction to start it (lighting a fire with a match), but then more heat is released than was required. Resources and Further Reading Qian, Y.‐Z., et al. “Diverse Supernova Sources for the r‐Process.” The Astrophysical Journal, vol. 494, no. 1, 10 Feb. 1998, pp. 285-296, doi:10.1086/305198.Yin, Xi, et al. “Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures.” Chemistry of Nanomaterials for Energy, Biology and More, vol. 2, no. 1, 26 Aug. 2015, pp. 37-41, doi:10.1002/cnma.201500123. Cite this Article Format mla apa chicago Your Citation Helmenstine, Anne Marie, Ph.D. "Understanding Endothermic and Exothermic Reactions." ThoughtCo, Apr. 5, 2023, thoughtco.com/endothermic-and-exothermic-reactions-602105. Helmenstine, Anne Marie, Ph.D. (2023, April 5). Understanding Endothermic and Exothermic Reactions. Retrieved from https://www.thoughtco.com/endothermic-and-exothermic-reactions-602105 Helmenstine, Anne Marie, Ph.D. "Understanding Endothermic and Exothermic Reactions." ThoughtCo. https://www.thoughtco.com/endothermic-and-exothermic-reactions-602105 (accessed May 30, 2023). copy citation By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. Cookies Settings Accept All Cookies