Science, Tech, Math › Math Example of Bootstrapping Share Flipboard Email Print "viruses-05-02169-g003" (CC BY 2.0) by phylofigures Math Statistics Applications Of Statistics Statistics Tutorials Formulas Probability & Games Descriptive Statistics Inferential Statistics Math Tutorials Geometry Arithmetic Pre Algebra & Algebra Exponential Decay Worksheets By Grade Resources By Courtney Taylor Courtney Taylor Professor of Mathematics Ph.D., Mathematics, Purdue University M.S., Mathematics, Purdue University B.A., Mathematics, Physics, and Chemistry, Anderson University Courtney K. Taylor, Ph.D., is a professor of mathematics at Anderson University and the author of "An Introduction to Abstract Algebra." Learn about our Editorial Process Updated on January 06, 2019 Bootstrapping is a powerful statistical technique. It is especially useful when the sample size that we are working with is small. Under usual circumstances, sample sizes of less than 40 cannot be dealt with by assuming a normal distribution or a t distribution. Bootstrap techniques work quite well with samples that have less than 40 elements. The reason for this is that bootstrapping involves resampling. These kinds of techniques assume nothing about the distribution of our data. Bootstrapping has become more popular as computing resources have become more readily available. This is because in order for bootstrapping to be practical a computer must be used. We will see how this works in the following example of bootstrapping. Example We begin with a statistical sample from a population that we know nothing about. Our goal will be a 90% confidence interval about the mean of the sample. Although other statistical techniques used to determine confidence intervals assume that we know the mean or standard deviation of our population, bootstrapping does not require anything other than the sample. For purposes of our example, we will assume that the sample is 1, 2, 4, 4, 10. Bootstrap Sample We now resample with replacement from our sample to form what are known as bootstrap samples. Each bootstrap sample will have a size of five, just like our original sample. Since we are randomly selecting and then are replacing each value, the bootstrap samples may be different from the original sample and from each other. For examples that we would run into in the real world, we would do this resampling hundreds if not thousands of times. In what follows below, we will see an example of 20 bootstrap samples: 2, 1, 10, 4, 24, 10, 10, 2, 41, 4, 1, 4, 44, 1, 1, 4, 104, 4, 1, 4, 24, 10, 10, 10, 42, 4, 4, 2, 12, 4, 1, 10, 41, 10, 2, 10, 104, 1, 10, 1, 104, 4, 4, 4, 11, 2, 4, 4, 24, 4, 10, 10, 24, 2, 1, 4, 44, 4, 4, 4, 44, 2, 4, 1, 14, 4, 4, 2, 410, 4, 1, 4, 44, 2, 1, 1, 210, 2, 2, 1, 1 Mean Since we are using bootstrapping to calculate a confidence interval for the population mean, we now calculate the means of each of our bootstrap samples. These means, arranged in ascending order are: 2, 2.4, 2.6, 2.6, 2.8, 3, 3, 3.2, 3.4, 3.6, 3.8, 4, 4, 4.2, 4.6, 5.2, 6, 6, 6.6, 7.6. Confidence Interval We now obtain from our list of bootstrap sample means a confidence interval. Since we want a 90% confidence interval, we use the 95th and 5th percentiles as the endpoints of the intervals. The reason for this is that we split 100% - 90% = 10% in half so that we will have the middle 90% of all of the bootstrap sample means. For our example above we have a confidence interval of 2.4 to 6.6. Cite this Article Format mla apa chicago Your Citation Taylor, Courtney. "Example of Bootstrapping." ThoughtCo, Aug. 28, 2020, thoughtco.com/example-of-bootstrapping-3126155. Taylor, Courtney. (2020, August 28). Example of Bootstrapping. Retrieved from https://www.thoughtco.com/example-of-bootstrapping-3126155 Taylor, Courtney. "Example of Bootstrapping." ThoughtCo. https://www.thoughtco.com/example-of-bootstrapping-3126155 (accessed June 3, 2023). copy citation