Science, Tech, Math › Science Increasing Atomic Number Doesn't Always Increase Mass Protons, Neutrons, and Isotopes Share Flipboard Email Print The universe is made up of atoms. Panoramic Images/Getty Images Science Chemistry Periodic Table Basics Chemical Laws Molecules Projects & Experiments Scientific Method Biochemistry Physical Chemistry Medical Chemistry Chemistry In Everyday Life Famous Chemists Activities for Kids Abbreviations & Acronyms Biology Physics Geology Astronomy Weather & Climate By Anne Marie Helmenstine, Ph.D. Anne Marie Helmenstine, Ph.D. Facebook Twitter Chemistry Expert Ph.D., Biomedical Sciences, University of Tennessee at Knoxville B.A., Physics and Mathematics, Hastings College Dr. Helmenstine holds a Ph.D. in biomedical sciences and is a science writer, educator, and consultant. She has taught science courses at the high school, college, and graduate levels. Learn about our Editorial Process Updated on January 09, 2018 Since atomic number is the number of protons in an atom and atomic mass is the mass of protons, neutrons, and electrons in an atom, it seems intuitively obvious that increasing the number of protons would increase the atomic mass. However, if you look at the atomic masses on a periodic table, you will see that cobalt (atomic No. 27) is more massive than nickel (atomic No. 28). Uranium (No. 92) is more massive than neptunium (No.93). Different periodic tables even list different numbers for atomic masses. What's up with that, anyway? Read on for a quick explanation. Neutrons and Protons Not Equal The reason increasing atomic number doesn't always equate to increasing mass is because many atoms don't have the same number of neutrons and protons. In other words, several isotopes of an element may exist. Size Matters If a sizeable portion of an element of lower atomic number exists in the form of heavy isotopes, then the mass of that element may (overall) be heavier than that of the next element. If there were no isotopes and all elements had a number of neutrons equal to the number of protons, then atomic mass would be approximately twice the atomic number. (This is only an approximation because protons and neutrons don't have exactly the same mass, but the mass of electrons is so small that it is negligible.) Different periodic tables give differing atomic masses because the percentages of isotopes of an element may be considered changed from one publication to another. Cite this Article Format mla apa chicago Your Citation Helmenstine, Anne Marie, Ph.D. "Increasing Atomic Number Doesn't Always Increase Mass." ThoughtCo, Aug. 25, 2020, thoughtco.com/increasing-atomic-number-vs-mass-608816. Helmenstine, Anne Marie, Ph.D. (2020, August 25). Increasing Atomic Number Doesn't Always Increase Mass. Retrieved from https://www.thoughtco.com/increasing-atomic-number-vs-mass-608816 Helmenstine, Anne Marie, Ph.D. "Increasing Atomic Number Doesn't Always Increase Mass." ThoughtCo. https://www.thoughtco.com/increasing-atomic-number-vs-mass-608816 (accessed March 20, 2023). copy citation