Table of Electrical Resistivity and Conductivity

Resistors on a computer circuit board
imagestock / Getty Images

This table presents the electrical resistivity and electrical conductivity of several materials, including copper, gold, platinum, glass, and more.

Electrical resistivity, represented by the Greek letter ρ (rho), is a measure of how strongly a material opposes the flow of electric current. The lower the resistivity, the more readily the material permits the flow of electric charge.

Electrical conductivity is the reciprocal quantity of resistivity. Conductivity is a measure of how well a material conducts an electric current. Electric conductivity may be represented by the Greek letter σ (sigma), κ (kappa), or γ (gamma).

Table of Resistivity and Conductivity at 20°C

Material ρ (Ω•m) at 20 °C Resistivity σ (S/m) at 20 °C Conductivity
Silver 1.59×10−8 6.30×107
Copper 1.68×10−8 5.96×107
Annealed copper 1.72×10−8 5.80×107
Gold 2.44×10−8 4.10×107
Aluminum 2.82×10−8 3.5×107
Calcium 3.36×10−8 2.98×107
Tungsten 5.60×10−8 1.79×107
Zinc 5.90×10−8 1.69×107
Nickel 6.99×10−8 1.43×107
Lithium 9.28×10−8 1.08×107
Iron 1.0×10−7 1.00×107
Platinum 1.06×10−7 9.43×106
Tin 1.09×10−7 9.17×106
Carbon steel (1010) 1.43×10−7
Lead 2.2×10−7 4.55×106
Titanium 4.20×10−7 2.38×106
Grain-oriented electrical steel 4.60×10−7 2.17×106
Manganin 4.82×10−7 2.07×106
Constantan 4.9×10−7 2.04×106
Stainless steel 6.9×10−7 1.45×106
Mercury 9.8×10−7 1.02×106
Nichrome 1.10×10−6 9.09×105
GaAs 5×10−7 to 10×10−3 5×10−8 to 103
Carbon (amorphous) 5×10−4 to 8×10−4 1.25 to 2×103
Carbon (graphite) 2.5×10−6 to 5.0×10−6 //basal plane 3.0×10−3 ⊥basal plane 2 to 3×105 //basal plane 3.3×102 ⊥basal plane
Carbon (diamond) 1×1012 ~10−13
Germanium 4.6×10−1 2.17
Sea water 2×10−1 4.8
Drinking water 2×101 to 2×103 5×10−4 to 5×10−2
Silicon 6.40×102 1.56×10−3
Wood (damp) 1×103 to 4 10−4 to 10-3
Deionized water 1.8×105 5.5×10−6
Glass 10×1010 to 10×1014 10−11 to 10−15
Hard rubber 1×1013 10−14
Wood (oven-dry) 1×1014 to 16 10−16 to 10-14
Sulfur 1×1015 10−16
Air 1.3×1016 to 3.3×1016 3×10−15 to 8×10−15
Paraffin wax 1×1017 10−18
Fused quartz 7.5×1017 1.3×10−18
PET 10×1020 10−21
Teflon 10×1022 to 10×1024 10−25 to 10−23

What Factors Affect Electrical Conductivity?

Three main factors affect the conductivity or resistivity of a material:

  1. Cross-Sectional Area: If the cross-section of a material is large, it can allow more current to pass through it. Similarly, a thin cross-section restricts current flow.
  2. Length of the Conductor: A short conductor allows current to flow at a higher rate than a long conductor. It's a bit like trying to move a lot of people through a hallway.
  3. Temperature: Increasing temperature makes particles vibrate or move more. Increasing this movement (increasing temperature) decreases conductivity because the molecules are more likely to get in the way of the current flow. At extremely low temperatures, some materials are superconductors.

What Is the Most Conductive Element?

Silver is the most electrically conductive element, followed by copper and gold. Even though silver is more conductive, copper and gold are used more often in electrical applications because copper is more affordable and gold has superior corrosion resistance.

Key Takeaways

  1. Use this table to see how electrically conductive and resistant different materials are.
  2. Silver ranks as the most electrically conductive element; however, copper and gold are more frequently utilized in electrical applications due to their cost-effectiveness and superior corrosion resistance, respectively.
  3. Factors such as cross-sectional area, length of the conductor, and temperature significantly influence the conductivity or resistivity of materials.
View Article Sources
Format
mla apa chicago
Your Citation
Helmenstine, Anne Marie, Ph.D. "Table of Electrical Resistivity and Conductivity." ThoughtCo, May. 12, 2024, thoughtco.com/table-of-electrical-resistivity-conductivity-608499. Helmenstine, Anne Marie, Ph.D. (2024, May 12). Table of Electrical Resistivity and Conductivity. Retrieved from https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499 Helmenstine, Anne Marie, Ph.D. "Table of Electrical Resistivity and Conductivity." ThoughtCo. https://www.thoughtco.com/table-of-electrical-resistivity-conductivity-608499 (accessed March 12, 2025).