# Ex 7.2, 21 - Chapter 7 Class 12 Integrals (Term 2)

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 7.2, 21 tan2 (2𝑥 – 3) Let I = tan2 (2𝑥 – 3) . 𝑑𝑥 = sec2 2𝑥 – 3−1 𝑑𝑥 = sec2 2𝑥 – 3 𝑑𝑥− 1.𝑑𝑥 = sec2 2𝑥 – 3 𝑑𝑥 − 𝑥+𝐶1 Solving 𝐈1 I1 = sec2 2𝑥 – 3 𝑑𝑥 Let 2𝑥 – 3=𝑡 Differentiating both sides 𝑤.𝑟.𝑡.𝑥 2−0 = 𝑑𝑡𝑑𝑥 2= 𝑑𝑡𝑑𝑥 𝑑𝑥 = 𝑑𝑡2 Thus, our equation becomes ∴ sec2 2𝑥 – 3 𝑑𝑥 = sec2 𝑡 . 𝑑𝑡2 = 12 sec2 𝑡 .𝑑𝑡 = 12 tan𝑡+𝐶2 = 12 tan 2𝑥−3+ 𝐶2 Now, I = sec2 2𝑥 – 3 𝑑𝑥−𝑥+𝐶1 = I1 − 𝑥+𝐶1 = 12 tan 2𝑥−3+ 𝐶2 −𝑥+𝐶1 = 𝟏𝟐 𝒕𝒂𝒏 𝟐𝒙−𝟑 −𝒙+𝑪

Ex 7.2

Ex 7.2, 1

Ex 7.2, 2

Ex 7.2, 3 Important

Ex 7.2, 4

Ex 7.2, 5 Important

Ex 7.2, 6

Ex 7.2, 7 Important

Ex 7.2, 8

Ex 7.2, 9

Ex 7.2, 10 Important

Ex 7.2, 11 Important

Ex 7.2, 12

Ex 7.2, 13

Ex 7.2, 14 Important

Ex 7.2, 15

Ex 7.2, 16

Ex 7.2, 17

Ex 7.2, 18

Ex 7.2, 19 Important

Ex 7.2, 20 Important

Ex 7.2, 21 You are here

Ex 7.2, 22 Important

Ex 7.2, 23

Ex 7.2, 24

Ex 7.2, 25

Ex 7.2, 26 Important

Ex 7.2, 27

Ex 7.2, 28

Ex 7.2, 29 Important

Ex 7.2, 30

Ex 7.2, 31

Ex 7.2, 32 Important

Ex 7.2, 33 Important

Ex 7.2, 34 Important

Ex 7.2, 35

Ex 7.2, 36 Important

Ex 7.2, 37

Ex 7.2, 38 (MCQ) Important

Ex 7.2, 39 (MCQ) Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.